Rabu, 21 Januari 2009

Education Software

Education Software - Facts

Education encompasses teaching and learning specific skills, and also something less tangible but more profound: the imparting of knowledge, good judgement and wisdom. One of the fundamental goals of education is to impart culture across the generations. Education Softwares help in formation of scholl administration systems , distant learning, streamlining college syllabus in big institutes etc.


Education Software - Download Resources


Education software

Manage schools that do not follow the standard model (adult education schools, private tutoring). Download Products...


School mgmt. systems

Manage and plan different activities in your school. Download Products....


Education Software - Solution Providers

Interactive Educational Software
Educational software for reading, writing, and math that works. Immediate feedback for students. Automatic scoring for teachers and tutors. Free trials.

School Management Solution
AAL is enterprise management of student information. Everything from student records and attendance to fees management rolled into one secure and easy-to-use software package.

Buy Kids Educational Software - Cheap
Surplus CD ROM offers a huge selection of children's educational and game software, at cheap prices, for toddlers to teens, for PC and Mac, all at discount prices.

Software Development Career Education
Prepare for a career as a software developer at Northface University in Salt Lake City, Utah. Earn your BS, MS or an MBA in Enterprise Informatics in one of our accelerated programs.

Educational Software at OfficeDepot.com
Shop Office Depot and get free shipping on orders of $50 or more. Save on school supplies, dorm room essentials, technology, and more. Get what you need and we'll deliver it, free.

Edu-Technology Has Education Software
Edu-Technology offers education software at special discounts for institutions and students with a focus on higher education. We carry quality lines such as Hyperchem and Primal Pictures.

Download Software from The University of Arizona




Arizona Mathematical Software

Software Philosophy

Over the past few years, with the aid of faculty and students, we have been creating commercial level educational software for use in and out of the mathematics classroom. These programs can be used by instructors for classroom demonstrations as well as by students for exploration and solving problems. A major consideration in designing our software was to keep the number of (fumbling) keystrokes the instructor needs to make in front of the class to a minimum, particularly as far as entering numbers is concerned.

Rather than create one massive comprehensive package that would take weeks of class time to learn, we decided to write many small packages. Each of these packages is designed to do one thing very well, and be used effectively with no, or minimal, training.

In view of the fact that we teach about 8,500 students each semester, it is impossible for us to have a computer lab large enough to accommodate them all. However, there are many departmental and public labs on campus, and about 15% of our students have access to computers at home or through friends. To make use of these untapped resources, we decided that all the software we created could be copied for free without fear of legal reprisals. We encourage anyone to take copies of our software. All our packages contain the following statment:

    This program may be freely distributed by any means, including bulletin boards, provided that there is no fee or charge or consideration of any kind which is in excess of $8. However, we retain all rights to this program.

Our software has been designed to have a specific educational impact. It is inclined for students learning mathematics, not for faculty doing research. Consequently, wherever possible it is not a blackbox, but is designed to take the gruntwork out of the calculations.

In general these programs require 640k, a CGA graphics card or better, and MS-DOS Version 3.00 or above.



Educational Categories

Our software falls into four categories:

Are You Ready?
Slide Shows
Teacher Aids
Toolkits

Are You Ready: the purpose of this series is to make available to students computer programs which review those materials from prerequisite courses that are essential for success in the present course. In addition, the programs identify a student's weak areas and recommends appropriate action (usually references are to Schuam's Outlines because they are inexpensive and are not revised every few years). They cover courses from Intermediate Algebra to Ordinary Differential Equations.

Slide Shows: this is a collection of screen images, primarily graphical, which anyone can view. They are usually images of functions which would be difficult, or impossible, to draw on the board. Some of these are animated and some zoom in on the function. They cover material from College Algebra to Partial Differential Equations.

Teacher Aids: these were written primarily as aids for middle and high school teachers, although many are of interest at the college level. They are subdivided into three groups of programs, namely Interactive Demos, Logical Games and Puzzles, and Simulations.

Toolkits: these are interactive exploratory tools which are aids to instructors and students, both in and out of the classroom. All have drop-down menus and are self-documenting, with on-line, context sensitive help. They are of use from Beginning Algebra to Fourier Series.



Are You Ready?

The following RUR programs have been released:
Are You Ready for Intermediate Algebra?
Are You Ready for College Algebra?
Are You Ready for Business Calculus?
Are You Ready for AP Calculus (AB)?
Are You Ready for Calculus I?
Are You Ready for Calculus II?
Are You Ready for Calculus III?
Are You Ready for Ordinary Differential Equations?


Slide Shows

Composition of Functions
  • Graphical Construction of f(g(x))
  • Graphical Justification of the Chain Rule

Fourier Series ...this slide show consists of graphs of various functions together with some of their Fourier Series approximation

  • Triangular Wave
  • Square Wave
  • Saw Tooth Wave
  • Cosine Expansion of Sine
  • Interrupted Square Wave

Functions ...this slide show consists of graphs of various functions

  • sin (1/x)
  • x sin (1/x)
  • Continuous, but not differentiable
  • x and |x|
  • sin x and |sin x|
  • sin x/x
  • (1-cos x)/x
  • a^x and its derivative
  • sin 2 pi x + sin 2 pi ax

Newton's Method ...this slide show consists of graphs of various demonstrations of Newton's Method

  • Method - Example 1
  • Method - Example 2
  • Problem - Example 1
  • Problem - Example 2
  • Problem - Example 3
  • Problem - Example 4
  • Problem - Example 5
  • Problem - Example 6

Numerical Integration

  • Left Endpoint Method
  • Right Endpoint Method
  • Midpoint Method
  • Trapezoidal Method
  • Numerical Method
  • Increasing/Decreasing Functions
  • Concave Up/Down Functions

Ordinary Differential Equations

  • One parameter family of curves
  • The US population and logistic growth
  • The cooling of coffee
  • Numerical Methods - Euler
  • Numerical Methods - Runge Kutta 4
  • Damped free vibrations
  • Series solutions
  • Bessel Function

PDE 1, PDE 2, PDE 3 ...these slide shows consist of graphs of numerical solutions of a particular partial differential equation, viz. the wave equation, with three different initial conditions

Taylor Series ...this slide show consists of graphs of various functions together with some of their Taylor polynomials about the origin

  • ex
  • sin x
  • cos x
  • 1/(1-x), -1 <>
  • 1/(1-x), -2 <>
  • arctan x, -1 <>
  • arctan x, -2 <>
  • (1+x)1/2, -1 <>
  • (1+x)1/2, -1 <>
  • log (1+x), -2 <>

Trouble ...this slide show consists of various graphs of the same function as seen over different domains

  • [-.1, .1] with about 160 sample points
  • [-1., .1002] to [-.1, .0998] in steps of -.00005
  • [-.0845, .0845] to [-.082, .082] in steps of -.0005
  • [-.0006, .0006] to [-.003, .003] in steps of .0012

Vibrating Strings ...this slide show shows how two traveling waves generate a stationary wave

Graphing Separable Equations ...this slide show shows the graphical construction of f(x)=g(y).



Teacher Aids

Interactive Demos 1
grid: constructs grids to your specification for projection onto a white-board ... you can select one of the built-in grids or create your own
polar grid: constructs polar grids to your specification for projection onto a white-board ... you can select one of the built-in grids or create your own
polygons: draws regular polygons inside a circle ... after the number of sides is entered by the user, it then computes the numerical value for the area and for (half) the perimeter for each polygon
trig 1: designed to help understand the sine and cosine functions
trig 2: carries on where "trig 1" left off ... as the angle sweeps through 720 degrees the sine and cosine waves are drawn
trig 3: shows how the graph of the tangent function is generated from the unit circle
xN sin(1/x): deals with the three functions x sin (1/x), x2 sin (1/x), and x3 sin (1/x) and their behavior near x=0

Interactive Demos 2

galton box: demonstrates the binomial distribution by dropping 100 balls down a triangular peg-board, called a Galton Box
number line: a demonstration which starts with the number line marked with integers from 1 to 10, adds the number 0, adds the integers from -10 to -1, rotates this line, superimposes the two lines -- one vertical and one horizontal -- to construct a 2D coordinate system, and puts dots on the plane at the lattice points
percent - circle: allows you to graphically compare the angles in a circle to percents of a circle
percent - square: allows you to graphically compare fractions and percents of a square region
shuffle: is useful for dividing a class of n students into groups in a random way
temperature: first shows the temperature on a thermometer taken once an hour over a 24 hour period starting at midnight ... then shows the same temperatures in a way that introduces the concept of a bar graph
venn diagrams: shows the graphical meaning of the union, intersection, and relative complement of two sets, A and B

Logical Games and Puzzles 1
These are games which require logic and mathematics. They are designed for middle school and above. The rules are contained in each program.

blackbox
the factor game
the factor game for two players
flower
get the point
get the point - random
hurkle 1 and 2
master
not one
the rainbow game
secret number sentence

Logical Games and Puzzles 2
These are games which require logic and mathematics. They are designed for middle school and above. The rules are contained in each program.

3 digits
add and multiply
coin piles
coin swap
grocery bingo
lockers
prime number game
quadratic bingo
reverse
slither 1,2,3, and 4
word arithmetic

Logical Games and Puzzles 3
These are games which require logic and mathematics. They are designed for middle school and above. The rules are contained in each program.

beans
number puzzle
tax collector
think-a-dot

Simulations

acute triangles: when we are asked to draw a triangle, we usually draw an acute triangle, i.e. a triangle where all three angles are less than or equal to 90 degrees ... we seldom draw an obtuse triangle ... which triangle, acute or obtuse, is really more likely?
carnival: at carnivals, a game is played by tossing a coin onto a large table ruled with squares the diameter of the coin ... you win a prize if the coin you toss does not cover, or touch, the corner of any square ... if you randomly throw the coin onto the table, what are your chances of not winning a prize?
fair coin 1: attempts to show that the coin we are flipping is a fair coin
fair coin 2: attempts to show what happens when we bet on the flipping of a fair coin
fair coin 3: attempts to show that the coin we are flipping is a fair coin, and also shows what happens when we bet on the flipping of this coin
last names: imitates the proliferation and extinction of English last names from 1350 to the present, and beyond ... during that time about 70 percent of the existing last names disappeared ... the question is whether this is due to chance or some type of catastrophe
party: simulates a party
sea battles: simulates a sea battle in the early 1800's at the time of the Battle of Trafalgar and Lord Nelson
triangle: try the following experiment -- draw an equilateral triangle and randomly select a point on one edge ... randomly select one of the three vertices of the triangle ... midway between it and the old point draw a new point ... treat the new point like the old point, i.e. randomly select a vertex and draw the point midway between the new point and that vertex ... continue doing this a few thousand times ... how much of the triangle do you think will be covered by this construction?
unfair coin 1: attempts to show that the coin we are flipping is an unfair coin
unfair coin 2: attempts to show what happens when we bet on the flipping of an unfair coin, biased 55 to 45 in head's favor
unfair coin 3: attempts to show that the coin we are flipping is an unfair coin, and also shows what happens when we bet on the flipping of this coin


Toolkits

baye's theorem: deals with Probabilities, Conditional Probabilities, Baye's Theorem, and how they are used in Search and Rescue to look for a missing subject lost in a hostile environment.

complex numbers: will evaluate complex expressions, find the nth roots of a complex number, and display complex numbers graphically.

conics: plots conics in standard form, as well as quadratic curves. The constants that usually occur in these formula, viz. a, b, c, d, e, f, h, k, and r, can be changed at will and the curves redrawn. Demonstrations of the construction of the ellipse, hyperbola, and parabola are available, as is the reflection property of the parabola.

division algorithm: does tasks to help you carry out several polynomial algorithms, such as Euclid's algorithm, Sturm's algorithm, and the algorithm to complete Bezout's identity.

findpoly: challenges you to determine the equation of a polynomial given information about its graph and that of its first two derivatives.

fortune: a program that encourages you to experiment with changing parameters and fitting curves. It allows you to enter expressions for up to two functions f(x) and g(x), containing parameters a, b, and c, and then plot those functions. The parameters a, b, and c may be 'tuned' and the new functions can then be plotted.

fourier: graphs the first 20 Fourier 'polynomials' of y = f(x), after you enter f(x) and the period 2L. You can either enter the Fourier coefficients yourself (fast, and accurate) or have the computer perform numerical integration to evaluate them (slow and approximate).

feuerbach's theorem: allows you to experiment with the size of a triangle and see the resulting incircles, excircles, circumcircles and nine-point circles. It is designed to give a pictorial representation of Feuerbach's Theorem.

graph theory: allows you to experiment with undirected, unweighted graphs. It can also decide whether a graph is planar, connected, has an Euler Circuit, Euler Path, or Hamilton Cycle. The graph can have up to 26 vertices.

histogram: calculates the mean, median, and standard deviation of a data set. It will also generate a histogram, a bar chart, a box and whisker plot, and a stem and leaf plot.

identify: challenges you to identify the function form its graph or from a numerical table of values.

implicit: tries to plot implicit functions of the form f(x,y) = c. Thus it can be used to plot implicit functions, defined by f(x,y) = 0, or contour lines (level surfaces) of the function z = f(x,y).

integral: a program that allows you to compute the numerical value of a definite integral by various techniques, and also to compare the efficiency of these techniques. The integrand may contain parameters a, b, and c.

interpol: allows you to enter a data set, and then you can select how you would like this set interpolated.

iterate: allows you to enter a function f(x) and it will generate various results related to the iterates f(f(x), f(f(f(x))), ..., of f(x).

limits: tries to find the limit of f(x) as x goes to x0, where x0 can be finite or infinite. The function I may contain parameters a, b, and c.

linalg: a comprehensive linear algebra package.

lineint: a program that allows you to create paths in the xy plane and numerically evaluate line integrals around these paths.

linsys: a program that solves linear systems of equations in two unknowns. Its primary purpose is to demonstrate the graphical interpretation of row reduction.

oldes: plots numerical solutions of 1st and 2nd order linear differential equations containing parameters a, b, and c. These parameters can be 'tuned' and the solution replotted. A user supplied function, as well as a user supplied power series, can also be plotted.

polar: plots polar equations of the form r = r(t), where t is the angle, as well as two dimensional parametric equations of the form x = x(t) = y(t). The functions r, x, and y, may contain parameters a, b, and c. Up to two equations can be plotted, and then you can "twiddle" the parameters and replot the equations.

root find: a program that allows you to compute the real roots of a function f(x) by various numerical techniques, and also to compare the efficiency of these techniques. f(x) may contain parameters a, b, and c.

sequence: is a program that allows you to create sequences a(n), and then shows the values of successive terms both numerically and graphically. It also computes the partial sums of sequence. Also included is a demonstration of Riemann's rearrangement theorem. The sequence a(n) may contain parameters a, b, and c.

simplex: is a program that performs the Simplex Method in three different modes, viz. having the computer show the answer, having the computer show the pivots, or having the user go through the step by step method.

slopes: will graph the slopes (direction field) and the integral curves of dy/dx = f(x,y), where f(x,y) = F(x,y)/G(x,y). The functions F(x,y) and G(x,y) may contain parameters a, b, and c.

spanish dictionary: is an English to Spanish Dictionary of Mathematical Terms.

systems: plots numerical solutions of systems of up to 6 first order ordinary differential equations containing parameters. These parameters can then be 'tuned' and the solution replotted. A user supplied expression and a user supplied data set can also be plotted.

taylor: graphs the first 20 Maclaurin Polynomials (i.e. Taylor Polynomials about x = 0 of y = f(x), after you enter f(x) and the Taylor coefficients.

truth tables: displays truth tables. Expressions are constructed from the statements p, q, and r, and the four operations, or, and, not, and implies.

twiddle: a program that encourages you to experiment with changing parameters and fitting data. It allows you to enter a function f(x), containing parameters a, b, and c, and then plot that function. The parameters a, b, and c may be 'twiddled' and the new function can then be plotted. A single data set can also be plotted, so that fitting a curve to a data set can be performed 'by eye'. If a data set is plotted, the numerical value of the least squares fit between f(x) and the data set can be displayed.

twodmaps: allows you to experiment with two dimensional affine transformations. you can experiment with fractals, find eigenvectors by eye, show the effects of a map on a set of points, and show the solution of a set of two linear equations.

units: converts between various types of units.

venn: displays Venn diagrams. Expressions are constructed form the sets A, B, C, S (universal set), and E (empty set), with the four operations union, intersection, relative complement, and complement.

vote: allows you to experiment with four different voting methods, the Plurality Method, the Borda Count Method, the Plurality With Elimination Method, and the Method of Pairwise Comparisons.

Rabu, 25 Juni 2008

WORKSHOP PAKEM FISIKA, YAYASAN FISIKA BUMI SILIWANGI



Untuk Format Pdf silahkan anda Download di link ini

1. http://www.turboupload.com/download/bMRRxM7Ps4Vx/leaflet1.pdf

2. http://www.turboupload.com/download/YprMe1feSu67/leaflet2.pdf


Kepada Yth :

Panitia Workshop PAKEM Fisika
Jl. Dr. Setiabudhi No. 199 Bandung 40153

Tlp. 022-2018395 : Fax : 022-2004548

HP. 081220036360 ( Utari )

HP. 081322289622 (Arief Hidayat)

e-mail: insanarifhidayat@yahoo.com

su @upi.edu


Sekretariat :

Jl. Dr. Setiabudhi No. 199 Bandung 40153

Tlp. 022-2018395 : Fax : 022-2004548

HP. 081220036360 ( Utari )

HP. 081322289622 (Arief Hidayat)

e-mail: insanarifhidayat@yahoo.com

su @upi.edu

A. Dasar Pemikiran

Mata pelajaran fisika yang erat kaitannya dengan fenomena dalam kehidupan sehari-hari, yang seharusnya disenangi siswa, justru peminatnya rendah. Hal ini tidak lepas dari pengajar kurang dapat membawakan pembelajaran pada fenomena yang sering di jumpai, ditambah dengan menonjolkan kerumitan matematis membuat konsep fisika menjadi ekslusif dan jauh dari kehidupan siswa

Kurangnya alokasi waktu, keterbatasan sarana demonstrasi dan eksperimen merupakan alasan yang muncul, padahal karena fisika identik dengan kehidupan siswa, fenomena itu dapat menjadi peraga yang aktual jika guru mengelola dengan kreatif

Workshop ini diselenggarakan sebagai sarana sharing pengetahuan dan pengalaman sesama pengajar fisika untuk menggali dan mengkonstruksi berbagai pendekatan, metode, media, serta perangkat-perangkat pembelajaran lainnya agar dapat mengembangkan pembelajaran fisika kearah pembelajaran yang aktif, kretif, efektif dan menyenangkan (PAKEM).

Dalam workshop akan ditampilkan berbagai demontrasi fisis yang menarik terkait dengan konsep fisika yang dikonstruksi dari alat dan bahan sederhana yang ada di lingkungan sekitar kemudian menkaji konseptual fisika yang berlaku di dalamnya. Demonstrasi nantinya digunakan sebagai fase pembuka komponen pembelajaran yaitu untuk memotivasi dan mengkondisikan siswa untuk belajar untuk mendukung kegiatan inti. Workshop ini akan dilanjutkan dengan penyusunan Rencana Pelaksanaan Pembelajaran (RPP) fisika yang memiliki warna PAKEM untuk kemudian diakhiri dengan peer teaching.

Melalui kegiatan workshop ini diharapkan wawasan, kreativitas, dan keterampilan pengajar fisika dalam merencanakan dan mengembangkan pembelajaran fisika yang PAKEM dapat meningkat. Dengan proses pembelajaran Fisika yang PAKEM diharapkan minat siswa terhadap matapelajaran fisika juga dapat ditingkatkan. Dengan jalan demikian, hasil belajar Fisika siswa pada berbagai kompetensi juga diharapkan dapat meningkat.



A. Tujuan

Workshop tentang PAKEM dilaksanakan dengan tujuan sebagai berikut:

1. Menampilkan berbagai demonstrasi tentang fenomena-fenomena fisika yang menarik dan dapat digunakan dalam pembelajaran Fisika yang PAKEM, serta sharing pengkajian konseptual yang mendasari setiap fenomena fisika yang ditampilkan.

2. Mengembangkan Rencana Pelaksanaan Pembelajaran (RPP Fisika) yang PAKEM, yang dilanjutkan dengan kegiatan Peer Teaching.

B. Waktu dan Tempat

Sesuai rencana kegiatan workshop akan diadakan pada :

· Hari, tanggal : Rabu-Jum’at, 16-17-18 Juli 2008

· Pukul : 07.30 WIB – selesai

· Tempat : Auditorium FPMIPA UPI

Jl. Dr. Setiabudhi No. 229 Bandung 40154.

C. Kegiatan

Workshop ini akan dilaksanakan dalam bentuk

- Demonstrasi berbagai fenomena fisis

- Diskusi dan pembahasan tentang konsep-konsep yang mendasari fenomena fisis yang ditampilkan

- Pembuatan RPP Fisika yang PAKEM

- Peer Teaching oleh perwakilan Peserta

D. Acara

a. Pleno

Topik : Program PMPTK yang terkait dengan peningkatan kualifikasi guru melalui kegiatan Diklat

Pembicara : Sumarna S Pranata, P.hD

(Direktur Pengembangan Diklat Dirjen PMPTK)

Topik : Pembelajaran Fisika yang Aktif, Kreatif, Efektif dan Menyenangkan

Pembicara : Kardiawarman, Ph.D

b. Sesi Paralel

Topik :Demonstrasi dan pembahasan berbagai fenomena fisika yang menarik (terkait dengan materi Mekanika, Listrik-Magnet, Suhu-Kalor, Gelombang, Fisika Modern dan IPBA), Pengembangan RPP Fisika yang PAKEM, dan Peer Teaching.

Narasumber : - Drs. I Made Padri, M. Pd

- Dr. Andi Suhandi, M.Si

- Drs. Saeful Karim, MSi

- Drs. Andhi Setiawan, M.Si

- Drs. Taufik Ramlan, M.Si

- Drs. Parlindungan, M.Si

E. Kepanitiaan

Pembina : Dra. Roswati Mudjiarto, M.Pd.

Drs. Omang Wirasasmita M.Pd

Drs. Taufik Ramlan R. , M.Si

Pengarah : Drs. Suhendiana Noor

( Ketua Yayasan Fibusi )

Ketua Pelaksana : Dr. Andi Suhandi, M.Si

Wakil Ketua : Dr. Eng. Agus Setiawan, M.Si

Sekretaris : Insan Arif H, S.Pd, M.Si.

Bendahara : Dra. Setiya Utari, M.Si

F. Pendaftaran dan Informasi

Pendaftaran dilakukan melalui formulir (terlampir) yang disertai dengan bukti pembayaran, secara langsung ke sekretariat Panitia, melalui faksimili, atau ke alamat :

e-mail :

su@upi.edu

insanarifhidayat@yahoo.com

Bagi peserta yang memerlukan informasi akomodasi penginapan akan dibantu oleh Panitia.

G. Biaya dan Fasilitas

Biaya kegiatan adalah:

Dosen, Guru, dan Umum : Rp. 200.000,-

(dua ratus ribu rupiah)

Fasilitas yang diperoleh : Seminar Kit, Makalah,

Konsumsi, dan Sertifikat

H. Formulir Pendaftaran

Mohon saya, yang namanya tercantum di bawah ini, didaftarkan sebagai: Peserta dalam kegiatan Workshop PAKEM Fisika.

Nama : ……………………………………

Instansi : ……………………………………...

Alamat : …………………………………….

Telp./Faks. : ……………………………………...

e-mail : ……………………………………...

Saya sertakan pula biaya pendaftaran sebesar:

Rp …………………(.............…………………………..)

Secara : langsung /transfer Bank (Pilih satu)

Catatan:

1) Transfer melalui BNI Cabang UPI Nomor rekening : 0140437642 Atas nama : Yayasan Fisika Bumi Siliwangi

2) Sertakan fotokopi transfer

3) Formulir dapat difotokopi sesuai dengan keperluan

……………………………. , 2008

_________________________

Nama Lengkap dengan Gelar

.

Minggu, 01 Juni 2008

Ayo Tim Olimpiade SMA & SMP Berjuanglah! Semangat! Ganbatte Kudasai!!

Perjuangan Segera Dimulai

5 Siswa yang polos namun memiliki potensi kecerdasan yang luar biasa ini mulai mengikuti pembekalan menjelang pelaksanaan Olimpiade Fisika SMU tingkat Provinsi senin 02 Juni 2008 bersama Tim Olimpiade Sains Sekolah yang di pimpin oleh:

Bapak Insan Arif Hidayat S.Pd M.Si

( lebih di kenal dengan Pak Insan)

mewakili kabupaten Bandung Barat. Mereka berasal dari SMAN 1 Cisarua, Padalarang, Lembang dan Cikalong Wetan.

Maka dapat dipastikan dalam waktu yang cuma 2 hari dan berisi 6 sesi itu mekanika menjadi menu yang wajib dinikmati, disamping cara penyampaian yang serius, namun terkesan rileks, intensif namun kemudian dengan semangat membaja kita (Kita????) menangani siswa per siswa dalam kesulitan mereka mengerjakan soal. sedetail itu yang mereka peroleh karena Pa Insan tidak sendirian, namun di dampingi oleh Tim.

Tidak cukup sampai disana, pelatihan yang di gagas oleh Kasie SMA Diknas Bandung Barat ini juga memberikan pelatihan ESQ, motivasi lomba dan tidak lupa tausiyah yang mengingatkan tentang pentingnya pembinaan ruhani. Nah. . . bwat adik-adik tim olimpiade fisika SMU kab Bandung Barat selamat berlomba!! Go Man & Girl Go…………Give the best!!!!!!!!


Berjuanglah Tim Olimpiade Fisika dan Astronomi
SMPN 1 CIMAHI
Kita Bisa!!!!!

Pada pekan lalu, kamipun mencoba mendampingi Tim Olimpiade Fisika dan Astronomi SMPN 1 Cimahi, dengan semangat membaja dan perjuangan yang gigih kami bersama 3 finalis Olimpiade Fisika dan Astronomi, bergulat menghadapi soal-soal latihan, sampai malam dan pagi-pagi sebelum lomba kami masih berusaha mengasah kemampuan kami dalam menyelesaikan soal-soal.
Bertempat di hotel Teratai Cikole dan Villa Melati Cikole lembang Bandung barat, akhirnya mereka berjuang sampai titik darah penghabisan untuk memecahkan soal-soal Fisika dan Astronomi tingkiat provinsi.
Berjuanglah, berikan yang terbaik, SEMANGAT,!!!! SEMANGAT!!!!

Organization Profile

Tim yang merupakan perpaduan Dosen dan Mahasiswa di Jurusan Pendidikan Fisika, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia (UPI) Bandung ini, merupakan ladang kreatifitas sekaligus menjawab kebutuhan akan pembekalan Olimpiade Sains baik untuk tingkat SD, SMP dan SMA dan membantu lembaga pendidikan menggelar lomba sekaligus menampilkan eksperimen dan fenomena sains untuk jenjang SD, SMP, SMA dan pembekalan penguasaan konsep, kemampuan menjawab soal dan prediksi soal. Kamipun Berencana Dimasa yang akan datang menjadi Tim Konsultan untuk Riset dan Pengembangan SBI (Sekolah Bertaraf Internasional) di Indonesia.

Informasi lebih lanjut tentang panitia dapat dihubungi pada :

Insan Arif Hidayat S.pd. Msi.

Jurusan Pendidikan Fisika UPI Bandung

E-mail : insanarifhidayat@yahoo.com

Mobile Phone : 081322289622

Oka Marisaka Ry.(Asisten Eksperimen Fisika Dasar),

M. Irfan(Mahasiswa Berprestasi Peraih IP 4,00)

Arip Nurahman
(Alumni Olimpiade Astronomi Provinsi dan 5 Besar Juara Debat Bahasa Inggris Tingkat Provinsi Jabar 2005).

M. Anrohi

Yogaswara A.P.

Rahmat

Siti Arniah



Sekilas Olimpiade Sains Nasional

Olimpiade Sains Nasional adalah ajang berkompetisi bagi para siswa pada jenjang SD, SMP, dan SMA di Indonesia. Siswa yang mengikuti Olimpiade Sains Nasional adalah siswa yang telah lolos seleksi tingkat kabupaten dan propinsi dan karenanya adalah siswa-siswa terbaik dari propinsinya masing-masing.

Olimpiade Sains Nasional diadakan setiap tahun di kota yang berbeda-beda. Kegiatan ini merupakan salah satu bagian dari rangkaian seleksi untuk mendapatkan siswa-siswa terbaik di seluruh Indonesia yang akan dibimbing dan diikutsertakan pada olimpiade-olimpiade tingkat internasional.




Bidang

Jenjang SD: Matematika dan IPA
Jenjang SMP: Matematika, Fisika dan Biologi
Jenjang SMA: Matematika, Fisika, Biologi, Kimia, Astronomi, Komputer, dan Ekonomi

Rencananya, pada pelaksanaan OSN 2008 di Makassar, akan ditambahkan satu bidang baru untuk jenjang SMP, yaitu Astronomi, dan satu bidang baru untuk SMA, yaitu Kebumian

Pelaksanaan

Sampai saat ini Olimpiade Sains Nasional telah dilaksanakan sebanyak enam kali :
tahun 2002 di Yogyakarta.
tahun 2003 di Balikpapan, Kalimantan Timur.
tahun 2004 di Pekanbaru, Riau.
tahun 2005 di Jakarta.
tahun 2006 di Semarang, Jawa Tengah.
tahun 2007 di Surabaya, Jawa Timur.
tahun 2008 di Makassar, Sulawesi Selatan
tahun 2009 di Medan, Sumatera Utara




Learning!! Fighting!! Winning!! Leading!!

“-H2O-“